APVV-23-0238 Effect of the application of organic molecules on the properties of perovskite thin-film structures.

Superconductivity
Slovak Research and Development Agency (APVV)
7/2024 – 12/2027
Maroš Gregor, doc. Ing., PhD.

In recent years, sufficient experimental evidence has accumulated that adsorbed organic chiral molecules affect the superconducting properties of YBa2Cu3O7-x (YBCO) films. In some cases, an increase in their critical temperature Tc can be observed. On the other hand, it has been shown that in the case of ferromagnetic layers (e.g., cobalt), the application of chiral molecules can lead to a change in magnetization without the use of an electric current. An important role here is played by spin. Spin introduces an additional degree of freedom into the system, allowing devices, for example, to reduce electrical consumption or increase their computational capacity. Spintronic devices have become an attraction in electronics; however, problems associated with controlling spin remain a significant challenge. A unique way of manipulating spin is through the effect known as chirality-induced spin selectivity (CISS), which results from the specific structure of organic chiral molecules. The project focuses on the preparation and characterization of simple heterostructures and their interaction with chiral polymers deposited on the film surface. Specifically, it deals with the influence of chiral lactic acid on perovskite thin films, where the selected perovskites are high-temperature superconductor YBCO and ferromagnet La1-xSrxMnO3 (LSMO).